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Numerical Solution of the Coupled-Power
Equation in Step-Index Optical Fibers

MICHEL ROUSSEAU AND LUC JEUNHOMME

Abstract-By use of the tlnitedifference method of numerical analysis,

a simple numerical solution is obtained for the coupled-power equation
in optical fibers. For a specified arbitrary coupling coefficient and launch-

ing condition, the solution yields all the quantities of interest in the

interior of the fiber: power distribution, attenuation, aud far-field

radiation pattern as functions of length. Results for buffered and cabled

Coming fibers are reported. Attention is mainly foeused on the influence
of the microbends on the optical losses.

I. INTRODUCTION

I
N USING a multimode optical fiber as a transmission

link, one is concerned about the propagation character-

istics under practical conditions. The manufacturing,

buffering, and cabling of the fiber introduce irregularities

in the index distribution and the waveguide geometry.

These deviations from the perfect straight waveguide

produce a coupling of the power of one guided mode to the

others, and therefore induce exeess losses.

In an attempt to explain the mode coupling process and

to allow quantitative predictions, Gloge has developed a

power flow equation [1]. In order to derive analytical

solutions, it is assumed that the differential attenuation

et(O)(attenuation of a mode of angle 6 minus the attenuation

of mode with 0 = O) has parabolic variation and the cou-

pling coefficient C(O) is constant [1], [2]. These assumptions

lead to far-field radiation patterns that theoretically extend

to infinity and to pulse broadening greater than those

experimentally obtained.

As a second approach in mode coupling understanding,

we have to take experimental results into account. It has

been observed [3], [4] that the attenuation u(O) is nearly

constant but becomes infinite for angle 6 greater than the

maximum guiding angle 13~, and that the coupling coeffi-

cient C(O) is not always constant. However, the correspond-

ing equation cannot be treated analytically for different

launching conditions.

It is the purpose of this paper to present a numerical

method of solution of the more realistic coupled power

equation. The power density is sought throughout the whole

length of the fiber for arbitrary coupling coefficients and

launchhg conditions.

After a short derivation of the basic equation (Section II),

the formal treatment and the difference schemes used are

given in Section III. The physical significance of the results

is discussed in Section IV.
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II. BASIC EQUATION

By assuming that the difference in refractive index of core

nl and cladding nz is very slight, Gloge [1] has shown that

the discrete mode spectrum can be approximated by a modal

continuum. The continuous variable is the propagation

angle 0 to the fiber axis related to the propagation constant

19of the corresponding mode by

2nn1
p. Tcose (1)

where 1 is the free-space wavelength.

The maximum angle 6~ is given by the condition for total

internal reflection

We deduce the numerical aperture

(2)

NA = nl sin 6M s ~2n1(n1 – nz). (3)

The angular separation between adjacent modes is constant

and given by

60=4
4an1

(4)

where a is the core radius.

With the additional assumption of mode coupling only

between adjacent modes, Gloge obtained the fundamental

coupled-power equation

aP(O,z)— .
az [ 1

– ‘X(0)P(6,Z) + : ; ec(q %) (5)

where

P(e,z)

c(e)

C@)

power distribution per unit solid angle at a

point z;

coupling coefficient;

modal attenuation.

As has been experimentally observed [3], [4], the attenua-

tion remains constant throughout the guided modes region

and rises very rapidly in the radiation-modes region. Thus

a(e) = Cqj, oseseM
(6)

a(e) = co, I$Jf <0.

By substituting (6) into (5), we obtain a loss term – aoP(O,z).

This leads to a multiplying factor exp (– ctoz) in the solution

that represents conventional losses (absorption and scatter-

ing). In the work that follows we neglect this component
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and only consider the coupling~induced losses. With this

simplification (5) is reduced to

ap(e,z) 802 a

[ 1—19c(e)* , 0SO<6M
az “780

P(e,z) = o, d~ < f).

(7)

It is convenient to introduce a normalized coupling

coefficient

D(e) = C(0)M2. (8)

Henee (7) in the guided modes region becomes

The boundary conditions are

P(6~,z) = o

D(O), ~ = o.
(?60=0

(9)

(lo)

The last condition indicates that coupling is limited to

propagation modes (i.e., O > O). The total power at length

zis

J

.9M
a(z) = 27C sin 19P(0,z) d6

o

under the assumption of weakly guiding fibers

J
OJ.I

Y(z) = 27C 6P(6,z) d6.
o

Using (9), this gives

d@(z) _ ~zd~D(&) $
~=ox

— _
dz

(11)

(12)

This relationship will be used to test the consistency of the

numerical method arid to estimate the achieved accuracy

(Section III).

Let us briefly examine the case where the coupling co-

efficient is constant. With

D(e) = Do (13)

(9) may be written

(14)

where Z is the normalized length

Z = DOZ. (15)

The integration of (14) may be performed by separation of

the variables. The result is [6]

The expansion coefficient qi depends on the launching

condition at z = O, and the loss coefficient 17i is related to

the ith zero ri of the Bessel function Jo by

()
2

ri= ~ .
M

It is noteworthy that the lowest order coefficient r. is

smaller than the others. For long distances, when Z satisfies:

z>> 1
rl – r.

Only the first term of the expansion (16) remains. The

steady-state solution of (14) simplifies to

P(6,.Z) = fio exp (– ro.z)~.(d~o~). (lo

The attenuation is

()2.405 2ro= —
e~

or, according to (15), in decibels per kilometer

ydd%m) = 2.51~~04D0,
M

Thus the steady-state radiation pattern is

()Pe,(0) = JO 2.405: .
M

(18)

(19)

This represents the exact analytical solution of (9) when

the coupling coefficient is constant. It will be compared in

Section IV with the numerical result obtained for the same

condition.

III. NUMERICAL METHOD

The numerical integration of(5) involves the segmentation

of the O and z axes to form a rectangular lattice. At each

point (Oj,z~) of the grid the derivatives are approximated by

difference formulas. Thus a set of finite-difference equations

with P(Oj,z~) replaces the differential equation with P(6,z).
First of all, the discretization of (5) poses the problem of

the conditions for convergence and stability of the numerical

solutions. Let A be the exact solution of the analytical

equation, D be the exact solution of the finite difference

equations, and N be the obtained numerical solution.

The convergence implies that, as the mesh of the lattice

becomes smaller, the discretization error A – D tends to

zero. The stability implies that the numerical error D — N

is as small as possible.

Discretization schemes with their convergence and

stability criteria are known for linear parabolic differential

equations with constant coefficients [5]. However, there

are few schemes when we have variable coefficients, and we

need to extrapolate the elementary formulas. Hence we

extend the Crank–Nicholson implicit method which is

unconditionally stable in the simple case and assures an

excellent convergence.
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Fig. 1. Segmentation of the interval [0,0~].

The principle is as follows. The discretization of the right-

hand side of (5) yields

(20)

where O(A@’) is the truncation error. Let Po, PO, + AP be

the values of P for z = Z. and for z = ZO + Az, respec-

tively. At z = ZO + (Az/2), we can write (20) in the form

AP fD@, P. + AP) + .fD@,pO) + ()(@) + O@Z2)

x= 2

(21)

We now have to apply (21) to each point of the grid.

In order to clarify this discussion, we have only shown

the finite-difference equations for the case D(O) == Do. The

determination of the equations for the general case is easily

deduced but is algebraically more complex. Furthermore,

we stress that the resolution method of the obtained equa-

tions is identical for any value of D(6) in which we are

interested.

As seen in Fig. 1, we divide the interval of interest [0,6~]

into segments [61,01 ~ ~] of identical lengths AO (this dis-

cretization step A6 should not be confused with the angular

separation M between modes). Thus

01=0 61 = (1 – 1) A@. (22)

To simplify the nomenclature, we define the point 1 as

having the abscissa 61, and we denote

P(or,z) = Pz(z). (23)

To obtain the finite-difference equation equivalent to (14),

we must estimate: (1/6) (d/d6)(O(t?P/d6)) at the point 1.

By repeated applications of the Taylor expansion, we

readily find that

_ (1 – +)P(I + 1) + 2(1 – I)P(I) + (1 - +)P(l - 1)—
(1 – 1) A02

(1A02 t34P +;a~—— —
12 aed~ o ae3~,1)

+ O (A@). (24)

In most previous schemes, for simplification, the terms in

A02 and At14 have been neglected. In our calculations,

changes of P(6,Z) as a function of 0 can be extremely fast.

For instance, this takes place if we select at Z = 01a narrow

angular power distribution. This implies large values of

third and fourth derivatures, and in order to feature

convergence would require very small AO. On the other hand,

small values of A% would lead to significant numbers of

points M, to long computer times, or to instability. We

circumvent this difficulty by retaining the term in A02.

The coefficient of A02/12 in (24) can be expressed as

a’p 2 a3p

(

_]aa2p +o~P

xx+;%–;%% )aos “

Using (14), we obtain

(25)

By substituting (25) into (24) and replacing the derivatives

by difference formulas, we find

= P(I + 1)
(

12(1 – +)2 – 1

12(1 – 1)(Z – t) A02 )

– P(I)
(

12(1 – +)(1 – ;) – 1

6(1 – ~)(1 – ~) A02 )

+ P(1 – 1)
(

12(1 – ;)2 – 1

12(1 – 1)(1 – %) A92 )

“ [(1 - +)P(I + 1) - 2(1 - l)P(I) + (1 - $)P(I - 1)]

+ O (A04). (26)

Equation (14) at point 1 then becomes

; [(z - +)P(I + 1) + 10(] - I)P(I) +(1 - ;)P(Z - 1)]

_ 12(1 – *)2 – 1—
(I – ~) A~2 ‘(1 + 1)

+ 2(1 – 1)
( )

12(1 – *)(1 – $) – 1 P(l)
(Z – ~)(1 – ;) A62

+ 12(Z – +)2 – 1
P(I – 1) + O (A04).

(1 – ~) A62
(27)

Let AZ be the discretization step of the Z axis. Referring

back to the Crank-Nicholson scheme in (20) and (21), we

obtain the set of equations

A(I)PZ+AZ(Z – 1) + B(I)Pz+qI) + c(I)Pz+qI + 1)

= KO(I) (28)

with

KO(I) = D(I)PZ(Z – 1) + E(I)PZ(I) + F(I)PZ(I -I- 1).

(29)
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The detailed calculation of coefficients A, B, C, D, E, F is

described in the Appendix; it is shown that they only

depend on I and on the ratio A92/AZ.
We avoid the problem of division by zero at O = O by -k.

using Fig. 2. Definition of the input beam parameters (angles are measured
inside the fiber).

IV. RESULTS

We remark that As an example, the computation reported herein uses

A(1) = D(1) = C(M – 1) = F(M – 1) = O.

As has been previously observed with other generalized

schemes [5 p. 193], the complete discretization error is of

the order A04 and AZ2. This implies that a given accuracy is

achieved with greater values of AO and AZ (i.e., less calcula-

tion) than required by the simpler formulas. It should be

noted that the form of equations (28) and (29) is unaffected

by the expansion to order 4 in AO. However, a further

reduction of the truncation error to AZ3 or AZ4 would lead

to the introduction of unknowns P ‘+’2(1 + 2) and

P’+”(I – 2), and to tremendous calculations for solving

(28).

Equation (28) assumes that all values of P(I) at length Z

are known and gives values for P at length Z + AZ. Hence

with any initial state of power distribution, the power

distribution at length kAZ can be calculated by solving the

system (28) k times.

In order to solve (28), a first method consists of inverting

the associated tridiagonal matrix of order M – 1. This

technique requires a long computer time and gives rise to

roundoff errors. Therefore we prefer to use a very simple and

efficient algorithm based on back substitution [5 p. 199].

It is shown that (28) can be written as

P’+’’(I) = S(I)[K,(Z) - c(l)P’+”(1 + l)]. (30)

The recursion relationships for S(l) and KI(I) are

13~ = 0.130 rad. (33)

From (3) the relevant numerical aperture with a core index

of 1.46 is 0.190, which is a reasonable value for Corning

fibers [3], [4], [6]. However, the selected value of 6M does

not restrict the generality of our results. According to (9)

and (37), they can be extended to the value

e~ = 0.130X

by simply multiplying the z scale by X2 and the scale of the

attenuation y by l/X2.

Although the method described allows for arbitrary

launching conditions, results are presented for input

distributions of the form

‘(6>0)=“p [- Fif9zc’] ’34)

with

o<flo<e~

O<c <lo.

As shown in Fig. 2, this corresponds to a Gaussian beam

with an incidence 90 and a width 8~/C. (Angles are defined

inside the fiber core.) It is noteworthy that at the lower

limit C = O, the guided modes are equally excited, as in

the case of the light emitting diode (LED).

With such initial conditions, it has been observed in all

the tested cases that the best compromise (computer time

S(I) =
1

accuracy) is achieved when
B(I) – A(I)C(Z – 1)S(1 – 1)

K,(I) = Ko(l) – A(I)K1(I – 1)S(1 – 1) (31)
iM =82

AZ_46

with At?’ . .

s(1) = --!-
B(l) In an attempt to measure the computation stability at every

Z step, we calculate separately both sides of (12). The
K~(l) = K()(l). (32) relative difference obtained is always less than 6 x 10-3.

The computation procedure is as follows. Once we have uniform CouPling Coefficient

S(l), XI(l) at mesh points 1 to M – 1 from (31) and (32),

we use (30) to find P’+’’(A4 – 1)
As an example, the parameter characterizing the mode

coupling is

p’+”(~ – 1) = S(M – l)K,(M – 1)
D(O) = Do = 2.92 x 10-6 (rad)2/m. (35)

and we work backward to find P ‘+A’(M _ 2), . . . p’+’z 1( ). This yields from (18) and (33) a very simple value of the
Hence, knowing P(O, Z + AZ), we can obtain the total steady-state attenuation:

power @(Z + AZ) by approximating (11) by the Simpson

rule. YO = 4.34 dB/km = 1 km-l. (36)
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Fig. 3. Total optical loss versus length for various Gaussian input
beams: exp (– 02C2/8M2).

/

Fig. 4. Total optical loss versus length for various Gaussian input
beams: exp (– (0/0~ – JJ2C2).

As previously mentioned for 0~, complete freedom is

available in the choice of DO. Straightforward extension to

D(O) = 2.92 X 10-6Y

may be achieved by multiplying the z scale by 1/Y and the

attenuation scale by Y.

The relevant results are fairly numerous. We want to

present the powerfulness of the method and to point out the

available specific parameters. For two values of the incidence

angle 00:0, ‘6~/2 and various widths f3~/C of the input beam,

we show the variations versus length:

—of the total optical loss on Figs. 3 and 4 [@(O)/@(z)];

—of the attenuation per unit length in Figs. 5 and 6

(37)

—of the normalized radiation pattern in Figs. 7 and 8.

We can verify that numerical and analytical results are

in very good agreement. Independently of the input beam,

the power reaches the steady-state distribution given from

(17) by

‘(’Z)=‘xp(-’Oz)JOF+405iH~
The predicted steady-state radiation pattern is actually

observed on the curves z = cc in Figs. 5 and 6 and the

attenuation y. is obtained on asymptotical lines in Figs. 7

and 8. Moreover, to give a measure of accuracy of the

4.34 —— —— ,—

\+

1

0
1 10 100 1000

>

Fig. 5. Attenuation versus length for various Gaussian input beams:
exp (– 02C2/t?J).

P&
d(d~m)

15

looq#

e. _ e
10 ~–

4.34 —’— —-—-

&

1

0{
10 100 1000

>

Fig. 6. Attenuation versus length for various Gaussian input beams:
exp (–(0/0~ - *)2C2).

method for all 0 and z, it is convenient to select at z = O a

basic distribution

P(e,o) = Jo(JFie)
and to observe throughout the length of the fiber the devia-

tion between the analytical solution deduced from (15) and

(16):

PA(6,z) = exp (– ri~02po(/Fi6)

and the numerical solution P~(O,z). It should be noted that

the input distribution can be negative for i > 1 so that the

relevant solutions have no physical significance. For z’ = O

and all values of f3 and z, we obtain

PA(6,Z) – PJe,z) < ~ ~ lo-~

PA(6,Z)

In the other cases (i > 1), if the total loss is less than 20 dB

(which yields z(km) s (1.6 x 103/ri)), we obtain

PA(6,Z) – PN(e,z) < z x 1o-,,

PA(O,Z)

These results are quite satisfactory and show the efficiency

of the method; however, a further improvement can be

achieved bv reducing AO and Az..-
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Fig. 7. Radiation pattern at different lengths for various Gaussian
input beams: exp (– f32C2/0~2). (a) C = 10-Z. (b) C = 1. (c) C = 5.
(d) C = 10.
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Fig. 8. Radiation patterns at different lengths for various Qaussian
input beams: exp (– (0/0~ – ~)2C2). (a) C = 1. (b) C = 2.
(C) C = 5. (d) C = 10.

The study of the radiation pattern and the attenuation

shows that the distance z, that is required to reach the

steady state is virtually independent of the parameters of

the input Gaussian beam. We find

z. = 1 km.

10

5

0

D(9) arb. units

I

ele ~
---&--p

Fig. 9. Mode coupling coefficient measured for three different buffered
Corning fibers.

On the other hand, at this length the total optical loss is

strongly dependent on the initial conditions. For instance,

the extreme losses obtained at z = z. are

2.4dBwith60=0, C=10

13.6 dB with.60 = (1~, C = 10.

The more interesting case (i.e., the smaller loss) occurs when

the input beam is very narrow and centered on the z axis.,

These results indicate that it is impossible to characterize

a given fiber by its overall loss without specifying the input

launching distribution.

Variable Coupling Coejjicient

Most of our experimental measurements on buffered

Corning fibers [3] show that the coupling coefficient as a

function of O initially decreases and remains virtually

constant in the vicinity of 19~ (Fig. 9). In order to take the

various magnitudes and rates of decrease into account, we

consider two types of coupling coefficients:

‘~~e’’’Dl=D”(l+ (case;));)) “’<4S6M

= Do, ~<ose~.

(38)

‘~pe2)’D’(o)=D”(l +’c0s2(i;)) 0se<4seM
= Do, ~<eseM

(39)

with

h=l,2, ”””,lo

The physical mean of parameters h and @ is sketched in

Fig. 10. As already noted, we can find and plot the length
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Fig. 10. Theoretical mode cou~l&~coefficients for buffered Corning

dependence of the principal unknowns: total loss, attenua-

tion, and radiation pattern. But to clarify the following

discussion, we are only concerned with two basic quantities.

1) The steady-state attenuation per unit length is defined

by

~ = ~im 4.34 da(z)
——

z+oJ~(Z) dz “
(40)

The numerical value of DO is given in (35) and yields for

h. = O: y = 4.34 dB~km (bearing in mind that the muhiplica-

tion of DO by the factor Y implies the multiplication of the z

scale by l/Y and the y scale by Y).

2) The effective width of the radiation pattern e.~~(z) is

defined as the semiangle of the cone which contains 90

pereent of the total power ~(z). From (11) d.~~(z) is the

solution of the eqhation

(41)

The variations of y with h for the different values of ~

are shown in Fig. 11 for the first type of coupling coefficient

and in Fig. 12 for the second. In both cases we observe that

the steady-state attenuation does not change ,greatly with

increasing h, as long as ~ is below i3~/2 (from (33) ~ <

0.065 rad). If we assume that mode coupling is mainly due

to random microbends of the fiber axis induced in the

buffering process, this means, referring to the power

spectrum of the curvature function [3], [7], that mechanical

correlation length must be kept above 3 mm. When imper-

fections with smaller mechanical wavelength are introduced,

the attenuation becomes very sensitive to the magnitude h,

but for high values of h tends to saturation. Moreover, the

comparison of Figs. 11 and 12 indicates that for a given

value of ~, the increase of y with h is faster in the first case

than in the second.

A consequence of these results is that, as far as possible,
we ha~e to prevent the formation of defects with short

wavelength because, even if their magnitude is small (for

instance h = 1), they dramatically influence the attenuation.

The long wavelength defects (i.e., > 3 mm) are much less

restricting, since the relative increase of attenuation is less

than 10 percent. Although the presence of the former cannot

be avoided in practice, we can limit their effect, upon the

15
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5

((d B/Km)

//

y/eM. 1

y/e M=.75

Y/ew=.5

f/ew=.25

I h
1 1 *

o 5 10

Fig. 11. Steady-state attenuation due to mode coupling versus h for
type 1.

t

~(d6/Km)

15

t

lot

h
, .

0 5 10

Fig. 12. Steady-state attenuation due to mode coupling versus h for
type 2.

differences between cases 1 and 2, by modifying the shape

of the power spectrum and consequently of D(O).

Then by retaining the coupling coefficient of type 2, we

show in Fig. 13(a) the length dependence of the effective

width of the radiation pattern for h = 5 and for several

values of ~. In order to observe important changes, we

select a rather narrow launching beam with 19,~~(0)=

0.3 tl~. Two things which are quite iptuitive are of interest:

a large value of 4 results in a fast evolution of (l.~~(z) and

the increase of the steady-state value of 6=~~with ~ is

perceptible only for @ greater than 0~/2.

In order to measure the rate of evolution, it is convenient

to introduce the parameter y~ [6] which is virtually

independent of the input conditions. It is related to the

distance z, required to reach the steady state by

(42)

The numerical values of y~ compared with the correspond-

ing value of y as functions of @ are as follows:
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Fig. 13. Effective width of the far-field radiation pattern versus length
for different values h and d (type 2). (a) h = 5. (b) d/0~ = 1.

In this way it is worth noting that our results are in a good

agreement with an analytical relationship obtained with

the main assumption of a constant coupling coefficient [6]

O:ff(z ) = tgff(o) + O:ff(co)thymz

O:ff(m)
(43)

e:ff(~) + e:ff(owmz

where 0~f f(m) is the steady-state value of 6~ff. Likewise

Fig. 13(b) shows the length dependence of effective width

for ~ = tl~ and for several values of h. The rates at which

the steady states are reached as functions of k are as follows:

?Z=O ?ZI=3

Y

h=2 b = 4.23
Y

h=5 y? = 5.2

Y

We observe that y~ and 6eff (co) increase with h but also

that 13Gff(m) tends to saturation.
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V. CONCLUSION

Under the assumptions of mode coupling occurring

between nearest neighbors and a differential attenuation

being zero from O to 9~ and infinite beyond 6~, we have

developed a numerical method of solution of the ppwer-

tlow equation in optical fibers.

Although we were obliged to take the high magnitude of

the derivatives into account, the method is simple and easy

to program. Moreover, its small memory requirements

allow the use of small digital computers.

Solutions for the basic parameters (power distribution,

attenuation, and far-field radiation patterp) are saught

throughout the whole length of the fiber under arbitrary

coupling coefficients and launching conditions. By intro-

ducing a correction factor on the power clistribution, the

method could be fruitfully applied to find the quantitative

influence of a fiber joint or a local defect.

However, the presented results dealt mainly with buff-

ered Corning fibers. It has been shown that with a ccmstaqt

coupling coefficient the numerical and analy~ical solutions

are in complete agreement and that the distortions in fiber

axis with correlation lengths less than 3 mm cause significant

excess losses. We feel that these results are yery important

in the design of the buffering of Corning fibers,

Two further extensions of this work seem desirable: the

determination of the optimal coupling coefficient shape and

the solution of the time-dependent equation.

APPENDIX

By applying the Crank–Nicholson scheq-ie described in

(20) and (21), (27) can be written

~’ [(1 - +)(P’+”(1 + 1) - P’(I + 1))

+ 10(1 – l)(P’+AZ(I) – P’(I))

+ (1 – ;)(P’+”(1 – 1) - I“(I – ]))]

(12(1 – H’ - 1) [pz+iiz(~ + I) + P’(I + 1)1——
21–1 ‘

+ (1 – Z)(12(I – ~)(1 -$) – 1)

(1 – +)(1 –;)

. [p’+ A’(z) + P’(I)] ‘

12(1 – 3)2 – 1
+ [P’+’Z(I – 1) + PZ(I – l)].

21–3

(Al)

Let

~quaticm (Al) can be rewritten in a standard form as

A(I)Pz+’~(1 – 1) + BE’+’’ + C(I)P’+”(Z +

= D@)PqI – 1) + E(I)P’(1) + F(Z)PZ(Z

(A2)

1)

+ 1)

(A3)
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with

()
c(z)= aI–; +

1 – 12(1 – +)2

(~–+) -

B(l) = 1OA(I – 1) +
2(1 – 1)[12(1 – +)(1 -- ;) – 1]

(1 – +)(1 – $)

(A4)

and

A(I) = C(I – 1)

F’(z) = – C(I) + 2(21 – 1)

E(I) = – B(I) + 20A(Z – 1)

D(Q = F’(Z – 1).

The first boundary condition (10) is satisfied with

C(M– I)= F(M– 1)=0. (A5)

This set of equations is valid for 1 = 2,. “ . M – 1. For

1 = 1, in order to include the second boundary condition,

we use expansions.

[1]

[2]

[3]

[4]

[5]

[6]

We get

A(l) = D(l) = o

B(l)=a+4

c(1) = –4

E(1) =2–4

F(l) = 4. (A6)
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Modes and Cutoff Frequencies of Crossed
Rectangular Waveguides

QUANG C. THAM, MEMBER, IEEE

Abstract—One complete solution is presented for determining the
electromagnetic field of a generalized crossed rectangular waveguide.

The method adopted is that of partial regions. Cutoff frequencies of

symmetrical crossed waveguides are presented as an example. The results,

even for low-order approximations, correspond well with the only
experimental results available in the literature.

I. INTRODUCTION

PRACTICAL waveguides usually have rectangular or

circular cross sections whose cutoff frequencies and

field equations have been known for years through the

method of separation of variables. Other cross-sectional

shapes are possible, but in general few of these have been

investigated. Recently, crossed rectangular waveguide

shapes have been of interest due to the fact that they may

offer some advantages in terms of circular polarization and

wider bandwidth or both [1]. Moreover, it has Ibeen shown

experimentally that a dichroic panel of symmetrical crossed

rectangular slots offers some favorable results as far as
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bandwidth and transmission at oblique angles of incidence

are concerned [2].

The knowledge of crossed rectangular waveguides is, to

the best knowledge of the author, limited to the paper by

Stalzer et al. [1] who use a computer program developed

by Konrad and Silvester [3] to calculate cutoff frequencies

and field patterns. They also performed experimental work

on the measurement of individual modes. Mathematical

expressions for fields inside a crossed rectangular wave-

guide have not been reported.

Mathematical expressions for the fields within the guide

are important. For example, if one is interested in modal

matching techniques [4], [5] to give predictions for trans-

mission of electromagnetic waves through a thin conducting

screen periodically perforated with crossed rectangular

slots, one has to know these relations.
The intent of this report is to find cutoff frequencies and

expressions for the fields within the waveguide. Cutoff fre-

quencies of symmetrical crossed waveguide shapes are pre-

sented in the form of graphs. The results, even for a 3 x 3

approximation, correspond well with the experimental
results reported [1]. .

The generalized crossed rectangular waveguide studied in


