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Numerical Solution of the Coupled-Power
Equation in Step-Index Optical Fibers

MICHEL ROUSSEAU anp LUC JEUNHOMME

Abstract—By use of the finite-difference method of numerical analysis,
a simple numerical solution is obtained for the coupled-power equation
in optical fibers. For a specified arbitrary coupling coefficient and launch-
ing condition, the solution yields all the quantities of interest in the
interior of the fiber: power distribution, attenuation, and far-field
radiation pattern as functions of length. Results for buffered and cabled
Corning fibers are reported. Attention is mainly focused on the influence
of the microbends on the optical losses.

I. INTRODUCTION

N USING a multimode optical fiber as a transmission
link, one is concerned about the propagation character-
istics under practical conditions. The manufacturing,
buffering, and cabling of the fiber introduce irregularities
in the index distribution and the waveguide geometry.
These deviations from the perfect straight waveguide
produce a coupling of the power of one guided mode to the
others, and therefore induce excess losses.

In an attempt to explain the mode coupling process and
to allow quantitative predictions, Gloge has developed a
power flow equation [1]. In order to derive analytical
solutions, it is assumed that the differential attenuation
o(6) (attenuation of a mode of angle § minus the attenuation
of mode with 8 = 0) has parabolic variation and the cou-
pling coefficient C(0) is constant [1], [2]. These assumptions
Iead to far-field radiation patterns that theoretically extend
to infinity and to pulse broadening greater than those
experimentally obtained.

As a second approach in mode coupling understanding,
we have to take experimental results into account. It has
been observed [3], [4] that the attenuation «(6) is nearly
constant but becomes infinite for angle # greater than the
maximum guiding angle 0,,, and that the coupling coeffi-
cient C(0) is not always constant. However, the correspond-
ing equation cannot be treated analytically for different
launching conditions.

It is the purpose of this paper to present a numerical
method of solution of the more realistic coupled power
equation. The power density is sought throughout the whole
length of the fiber for arbitrary coupling coefficients and
launching conditions.

After a short derivation of the basic equation (Section I1),
the formal treatment and the difference schemes used are
given in Section III. The physical significance of the results
is discussed in Section IV.
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I1. Basic EQUATION

By assuming that the difference in refractive index of core
n, and cladding n, is very slight, Gloge [1] has shown that
the discrete mode spectrum can be approximated by a modal
continuum. The continuous variable is the propagation
angle 0 to the fiber axis related to the propagation constant
B of the corresponding mode by
27l:n1

B = cos 6 o
where A is the free-space wavelength.
The maximum angle 6, is given by the condition for total

internal reflection
Oy = arcos = A/Z ( ) 2)
We deduce the numerical aperture
3)
The angular separation between adjacent modes is constant
and given by

NA = ny sin 0y ~ \/2n1(n1 — ).

50 = @
4an,
where a is the core radius.
With the additional assumption of mode coupling only
between adjacent modes, Gloge obtained the fundamental
coupled-power equation

oP(0,z) _ 502 [ P, z)]
_— a(B)P(6, ——10C(0 5
% ()(Z)+069 )] 0 (5)
where
P(0,z) power distribution per unit solid angle at a

point z;
coupling coefficient;
modal attenuation.

()]
()
As has been experimentally observed [3], [4], the attenua-

tion remains constant throughout the guided modes region
and rises very rapidly in the radiation-modes region. Thus

a(0) = ao, <0<y
aB) = 0, By <.

By substituting (6) into (5), we obtain a loss term —aP(6,2).
This leads to a multiplying factor exp (—a4z) in the solution
that represents conventional losses (absorption and scatter-
ing). In the work that follows we neglect this component

©®
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and only consider the coupling-induced losses. With this
simplification (5) is reduced to

: ,
oP(0.7) _ 567 0 [gc(g) ‘E@f_)] . 0<0<0y
Oz a0

0 90
P(H,Z) = 09 0M < 0.

@

It is convenient to introduce a normalized coupling
coefficient

D) = C(6)56>. (8)
Hence (7) in the guided modes region becomes
oP 0 oP
0 — = — |60D@O) —]| . 9
0z 00 [ ©) 66] )

The boundary conditions are

P(0y.z) =0
D(H).an—P = 0. (10)
00)e=0

The last condition indicates that coupling is limited to
propagation modes (i.e., § > 0). The total power at length
zis

0

P(z) = 20 f " sin 0P(0,2) do

0

under the assumption of weakly guiding fibers

(374
P(z) = 2nf 0P(0,z) d6. (11)
0
Using (9), this gives
d?(z) opP
=7 = 2760,,D(6,,) — 12
dz 76, D(65) 36100, (12)

This relationship will be used to test the consistency of the
numerical method and to estimate the achieved accuracy
(Section IID).

Let us briefly examine the case where the coupling co-
efficient is constant. With

D@®) = D, 13)
(9) may be written
7z~ 5% ' 7 a9
wheré Z is the normalized length
Z = Dyz. 15)

The integration of (14) may be performed by separation of
the variables. The result is [6]

POZ) = 3 mew (-T2)IGT 0. (16)
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The expansion coefficient #; depends on the launching
condition at z = 0, and the loss coefficient I'; is related to
the ith zero r; of the Bessel function J, by

2
r, = (r_) ,
O

It is noteworthy that the lIowest order coefficient I'y is
smaller than the others. For long distances, when Z satisfies:

zZ > —1—
r -1,
Only the first term of the expansion (16) remains. The

steady-state solution of (14) simplifies to

P(6,Z) = no exp (—~ToZ)o(NTo0). (17)

The attenuation is

2
T, = (2.405)
O

or, according to (15), in decibels per kilometer

2.51 x 10*D,

0y

7o(dB/km) = (18)

Thus the steady-state radiation pattern is
0
P.(0) = J, {2.405 —} . (19)
Om
This represents the exact analytical solution of (9) when
the coupling coefficient is constant. It will be compared in
Section IV with the numerical result obtained for the same
condition. ’

II1. NUMERICAL METHOD

The numerical integration of (5) involves the segmentation
of the 0 and z axes to form a rectangular lattice. At each
point (0;,z,) of the grid the derivatives are approximated by
difference formulas. Thus a set of finite-difference equations
with P(0;,z,) replaces the differential equation with P(8,z).

First of all, the discretization of (5) poses the problem of
the conditions for convergence and stability of the numerical
solutions. Let 4 be the exact solution of the analytical
equation, D be the exact solution of the finite difference
equations, and N be the obtained numerical solution.
The convergence implies that, as the mesh of the lattice
becomes smaller, the discretization error 4 — D tends to
zero. The stability implies that the numerical error D — N
is as small as possible.

Discretization schemes with their convergence and
stability criteria are known for linear parabolic differential
equations with constant coefficients [5]. However, there
are few schemes when we have variable coefficients, and we
need to extrapolate the elementary formulas. Hence we
extend the Crank-Nicholson implicit method which is
unconditionally stable in the simple case and assures an
excellent convergence.
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Fig. 1.
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Segmentation of the interval [0,8,].

The principle is as follows. The discretization of the right-
hand side of (5) yields

% — 1(0,P) + 0(A0D)
0z
where O(A8") is the truncation error. Let Py, P, + AP be
the values of P for z = z, and for z = z, + Az, respec-
tively. At z = z, + (Az/2), we can write (20) in the form

A_}) — fD(ga PO + AP) + fD(asPO)
Az 2

20)

+ 0(AG%) + 0(AZ?).

@n

We now have to apply (21) to each point of the grid.

In order to clarify this discussion, we have only shown
the finite-difference equations for the case D(0) = D,. The
determination of the equations for the general case is easily
deduced but is algebraically more complex. Furthermore,
we stress that the resolution method of the obtained equa-
tions is identical for any value of D(f) in which we are
interested.

As seen in Fig. 1, we divide the interval of interest [0,0,,]
into segments [6,,8,,,] of identical lengths A8 (this dis-
cretization step A8 should not be confused with the angular
separation 60 between modes). Thus

0, =0 6, =( — 1) A 22)

To simplify the nomenclature, we define the point 7 as
having the abscissa 8;, and we denote
P(6,,Z) = PXI).

To obtain the finite-difference equation equivalent to (14),
we must estimate: (1/6)(0/06)(6(0P/00)) at the point I
By repeated applications of the Taylor expamsion, we
readily find that

(23)

1.2(y%)
600\ a6/,
_U=HPA+ 1)+ 2 — DPI) + (I —HPJ - 1)
(I — 1) A#?
LA (2E 20
12 \ag*, 6 00°,
SR @Q
360 \0 90°|, 86|,
+ 0 (A6°). (24)

In most previous schemes, for simplification, the terms in
A6? and AG* have been neglected. In our calculations,
changes of P(6,Z) as a function of 6 can be extremely fast.
For instance, this takes place if we select at Z = 0 a narrow
angular power distribution. This implies large values of
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third and fourth derivatures, and in order to feature
convergence would require very small Af. On the other hand,
small values of Af would lead to significant numbers of
points M, to long computer times, or to instability. We
circumvent this difficulty by retaining the term in A§?.

The coefficient of AG?/12 in (24) can be expressed as

3
+05P).

3P »P
26°

28°P 10 (a2p
6%

00> 600 \a6®
Using (14), we obtain
ﬂ’ 20°P @ [1 0 (

0% 00 oz |0

6P)] 10 (1 6P)
- 0} + -2 (-2,
a6/} " 826 \o %

(25)

By substituting (25) into (24) and replacing the derivatives
by difference formulas, we find

12y )
0 00 a6

=P(I+1)(

I

12(I — 1)?* — 1 )
12(1 — )T — 4) A6?

EUEE LS )
6 — 31 — 3) AP

~HU(

120 — 3 — 1 )
120 — )T — 1) AG?

1 9
12U — 1) oz

[d -HPA + 1) —2( — HPI) + I —HPUI - 1)]
+ 0 (A0, (26)

+P(I—1)(

Equation (14) at point 7 then becomes

—a% [ — HPU + 1) + 10 — DHPUI) + (I — Hrd — 1]

12U -2 -1
sV P+ 1)
121 - Hd =3 — 1
2(1 —
A I)( (I - HU - 3) A0*? )P(I)
(1 - =1, .
T YYE P(I — 1) + 0 (A6%). 27

Let AZ be the discretization step of the Z axis. Referring
back to the Crank-Nicholson scheme in (20) and (21), we
obtain the set of equations

AMDPZHAY(I — 1) + B(DP*4(I) + C(DP*A4(I + 1)
= Ko(I) (28)
with
Ko(I) = DIDPXI — V) + E(HPAI) + F(DP*(I + 1).
(29)
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The detailed calculation of coefficients 4, B, C, D, E, F is
described in the Appendix; it is shown that they only
depend on I and on the ratio AG%/AZ.

We avoid the problem of division by zero at 6 = 0 by
using

2
fim £ 2 (0‘7_-1,’) =228
0-~0 0 00 \" 36, 00%[4-0

We remark that
AD =Dy=CM - 1) =FM - 1) = 0.

As has been previously observed with other generalized
schemes [5 p. 193], the complete discretization error is of
the order A@* and AZ2. This implies that a given accuracy is
achieved with greater values of A0 and AZ (i.e., less calcula-
tion) than required by the simpler formulas. It should be
noted that the form of equations (28) and (29) is unaffected
by the expansion to order 4 in Af. However, a further
reduction of the truncation error to AZ3 or AZ* would lead
to the introduction of unknowns PZ*4%(J 4 2) and
PZ+AZ(1 . 2), and to tremendous calculations for solving
(28).

Equation (28) assumes that all values of P(J) at length Z
are known and gives values for P at length Z + AZ. Hence
with any initial state of power distribution, the power
distribution at length kAZ can be calculated by solving the
system (28) k times.

In order to solve (28), a first method consists of inverting
the associated tridiagonal matrix of order M — 1. This
technique requires a long computer time and gives rise to
roundoff errors. Therefore we prefer to use a very simple and
efficient algorithm based on back substitution [5 p. 199].

It is shown that (28) can be written as

PZHA(I) = S(D[Ky(D) — CP** X + 1)].  (30)

The recursion relationships for S(/) and K, (/) are

1
SO = B(I) — ADCU — DSU — 1)
Ki() = Ko() — ADK,I — DST - 1) (3D
with
1
S0 =35
K(1) = K(1). (32)

The computation procedure is as follows. Once we have
S(I), K,(I) at mesh points 1 to M — 1 from (31) and (32),
we use (30) to find PZ*4%(M — 1)

PP — 1) = S(M — DK(M — 1)

and we work backward to find PZYA%(M — 2),--- PZ*4%(1).
Hence, knowing P(8, Z + AZ), we can obtain the total
power #(Z + AZ) by approximating (11) by the Simpson
rule.
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Fig.2. Definition of the input beam parameters (angles are measured
inside the fiber).

IV. RESULTS

As an example, the computation reported herein uses

8y = 0.130 rad. (33)

From (3) the relevant numerical aperture with a core index
of 1.46 is 0.190, which is a reasonable value for Corning
fibers [3], [4], [6]. However, the selected value of 0, does
not restrict the generality of our results. According to (9)
and (37), they can be extended to the value

0, = 0.130X

by simply multiplying the z scale by X% and the scale of the
attenuation y by 1/X2.

Although the method described allows for arbitrary
launching conditions, results are presented for input
distributions of the form

P(0,0) = exp [— (M)Z C2]

» (34)

with
0<6,

0<C <

IA

O
10.

As shown in Fig. 2, this corresponds to a Gaussian beam
with an incidence 6, and a width 8,,/C. (Angles are defined
inside the fiber core.) It is noteworthy that at the lower
limit C = 0, the guided modes are equally excited, as in
the case of the light emitting diode (LED).

With such initial conditions, it has been observed in all
the tested cases that the best compromise (computer time
accuracy) is achieved when

M =82
AZ

AG?

In an attempt to measure the computation stability at every
Z step, we calculate separately both sides of (12). The
relative difference obtained is always less than 6 x 1073,

Uniform Coupling Coefficient
As an example, the parameter characterizing the mode
coupling is

D) = Dy = 2.92 x 107 (rad)?/m. (35)

This yields from (18) and (33) a very simple value of the
steady-state attenuation:

7o = 4.34 dB/km = 1 km™". (36)
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Fig. 3. Total optical loss versus length for various Gaussian input
beams: exp (— 02C?/6)2).

B(o)
61 6 (ee)
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»
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—_

z(m)
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Fig. 4. Total optical loss versus length for various Gaussian input
beams: exp (—(6/8y — )2C?).

As previously mentioned for 8,, complete freedom is
available in the choice of D,. Straightforward extension to

D() = 2.92 x 107°Y

may be achieved by multiplying the z scale by 1/Y and the
attenuation scale by Y.

The relevant results are fairly numerous. We want to
present the powerfulness of the method and to point out the
available specific parameters. For two values of the incidence
angle 6,: 0, 6,,/2 and various widths 8,,/C of the input beam,
we show the variations versus length:

—of the total optical loss on Figs. 3 and 4 [#(0)/2(2)];

—of the attenuation per unit length in Figs. 5 and 6

x = 23447Q) gy

- P(z) dz (37)

—of the normalized radiation patfern in Figs. 7 and 8.

We can verify that numerical and analytical results are
in very good agreement. Independently of the input beam,
the power reaches the steady-state distribution given from
(17) by

P(0,2) = exp (—702)o (2.405 6—9—) .

M:

The predicted steady-state radiation pattern is actually
observed on the curves z = oo in Figs. 5 and 6 and the
attenuation 7y, is obtained on asymptotical lines in Figs. 7
and 8. Moreover, to give a measure of accuracy of the
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Fig. 5. Attenuation versus length for various Gaussian input beams:
exp (— 02C?/0,/).

o (dB/km)
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434 e

1

o z (m)
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Fig. 6. Attenuation versus length for various Gaussian input beams:
exp (—(8/6m — $?C?).

method for all 8 and z, it is convenient to selectat z = O a
basic distribution

P(6,0) = Jo(NT'H)

and to observe throughout the length of the fiber the devia-
tion between the analytical solution deduced from (15) and
(16): “

P,(0,2) = exp (= T:Doz)Jo(\T1H)
and the numerical solution Py(6,z). It should be noted that
the input distribution can be negative for i > 1 so that the

relevant solutions have no physical significance. For i = 0
and all values of € and z, we obtain

PA(GaZ) - PN(ODZ)
PA(G,Z)
In the other cases (i > 1), if the total loss is less than 20 dB

< 5 x 1075,

.(which vields z(km) < (1.6 x 10%/T")), we obtain

P,(0,2) — Py(0,2)
PA(HaZ)

<2 x 10772

These results are quite satisfactory and show the efficiency
of the method; however, a further improvement can be
achieved by reducing A6 and Az.
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32 ——
2(m:280 — —
600 ——+~

Fig. 7. Radiation pattern at different lengths for various Gaussian
i(ﬁput beams: exp (— 02C2%/0*). @) C = 1072. () C = 1.(c)C = 5.
) C = 10.

@

Fig. 8. Radiation patterns at different lengths for various Gaussian

input beams: exp (—(8/6y — 3)?C?. (@ C=1. (b) C=2.
©C=5.()C=10.

The study of the radiation pattern and the attenuation
shows that the distance z, that is required to reach the
steady state is virtually independent of the parameters of
the input Gaussian beam. We find

z, ~ 1 km,
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D (8) arb. units

0

Fig.9. Mode coupling coefficient measured for three different buffered
Corning fibers.

On the other hand, at this length the total optical loss is
strongly dependent on the initial conditions. For instance,
the extreme losses obtained at z = z, are

0,C=10
0, C = 10.

2.4 dB with 0, =
13.6 dB with 0, =

The more interesting case (i.e., the smaller loss) occurs when
the input beam is very narrow and centered on the z axis._

These results indicate that it is impossible to characterize
a given fiber by its overall loss without specifying the input
launching distribution.

Variable Coupling Coefficient

Most of our experimental measurements on buffered
Corning fibers [3] show that the coupling coefficient as a
function of 0 initially decreases and remains virtually
constant in the vicinity of 8,, (Fig. 9). In order to take the
various magnitudes and rates of decrease into account, we
consider two types of coupling coefficients:

TypeI): D,(6) = D, (1 + hcos (gg)) 0<0< <0y

= Dy, ¢ <0< 0y

(38%)

Type2): D,(0) = D, (1 + hcos? (gg)) , 0<0<¢<Oy

= D,, o <O0<0y
(39
with
h =12, ,10
0, 0y 304
_—)_,_:9
¢ 4’2 4 M

The physical mean of parameters 4 and ¢ is sketched in
Fig. 10. As already noted, we can find and plot the length
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p(e)/p,

1+h

0 ] ¢ o,
Fig. 10. Theoretical mode cou%lti)ng coefficients for buffered Corning
ers.

dependence of the principal unknowns: total loss, attenua-
tion, and radiation pattern. But to clarify the following
discussion, we are only concerned with two basic quantities.
1) The steady-state attenuation per unit length is defined

by
y = lim 4.34 Cﬂ(z)

z—+ 0 @(Z) dz (40)

The numerical value of D, is given in (35) and yields for
h = 0:y = 4.34 dB/km (bearing in mind that the multiplica-
tion of D, by the factor ¥ implies the multiplication of the z
scale by 1/Y and the y scale by Y). ’

2) The effective width of the radiation pattern 0,(z) is
defined as the semiangle of the cone which contains 90
percent of the total power 2(z). From (11) 6.(2) is the
solution of the equation

{5 0P(9,z) d6 _
2 6P(6,z) db

The variations of y with & for the different values of ¢
are shown in Fig. 11 for the first type of coupling coefficient
and in Fig. 12 for the second. In both cases we observe that
the steady-state attenuation does not change greatly with
increasing A, as long as ¢ is below 8,,/2 (from (33) ¢ <
0.065 rad). If we assume that mode coupling is mainly due
to random microbends of the fiber axis induced in the
buffering process, this means, referring to the power
spectrum of the curvature function [3], [ 7], that mechanical
correlation length must be kept above 3 mm. When imper-
fections with smaller mechanical wavelength are introduced,
the attenuation becomes very sensitive to the magnitude 4,
but for high values of / tends to saturation. Moreover, the
comparison of Figs. 11 and 12 indicates that for a given
value of ¢, the increase of y with A is faster in the first case
than in the second.

A consequence of these results is that, as far as possible,
we have to prevent the formation of defects with short
wavelength because, even if their magnitude is small (for
instance 2 = 1), they dramatically influence the attenuation.
The long wavelength defects (i.e., > 3 mm) are much less
restricting, since the relative ircrease of attenuation is less
than 10 percent. Although the presence of the former cannot
be avoided in practice, we can limit their effect, upon the

(1)
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Y (d8/Km)
15} ¢/0,=1
10 [
$/0,=-75
5 $/0,=.5
Y/6,=-25
h
1 1
o 5 10
Fig. 11. Steady-state attenuation due to mode coupling versus % for
type 1.
Y (dB/Km)
15 F
10
9/0,%1
¢/0, =75
S5 ?/em =.5
/6y =25
1 L h
0 5 10
Fig. 12. Steady-state attenuation due to mode coupling versus / for
type 2.

differences between cases 1 and 2, by modifying the shape
of the power spectrum and consequently of D(f).

Then by retaining the coupling coefficient of type 2, we
show in Fig. 13(a) the length dependence of the effective
width of the radiation pattern for £~ = 5 and for several
values of ¢. In order to observe important changes, we
select a rather narrow launching beam with 6.4(0) =
0.3 0,;. Two things which are quite iptuitive are of interest:
a large value of ¢ results in a fast evolution of 6,.(z) and
the increase of the steady-state value of 0, with ¢ is
perceptible only for ¢ greater than 6,,/2.

In order to measure the rate of evolution, it is convenient
to introduce the parameter y, [6] which is virtually
independent of the input conditions. It is related to the
distance z, required to reach the steady state by

2

Ze

(42)

Yo =

The numerical values of y_, compared with the correspond-
ing value of y as functions of ¢ are as follows:
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(b)

Fig. 13. Effective width of the far-field radiation pattern versus length
for different values # and ¢ (type 2. @ h=35. () ¢/6 = 1.

D

M Yo

¢=— -—=4.27
2 Y

¢=§0£ Yo _ 504
4 Y

¢ = Oy Yo = 52,
b

In this way it is worth noting that our results are in a good
agreement with an analytical relationship obtained with
the main assumption of a constant coupling coefficient [6]

02:(0) + 0%:(c0)thy,,z
eff(oo) + Heff(o)thywz

where 0.(c0) is the steady-state value of 0. Likewise
Fig. 13(b) shows the length dependance of effective width
for ¢ = 6), and for several values of /. The rates at which
the steady states are reached as functions of # are as follows:

eff(z)
et’f(oo)

(43)

~2

=0 o 3
?

h=2 Y= 423
y
7

k=10 Y=_703
7

We observe that y,, and O.¢(c0) increase with 4 but also
that 0,¢(00) tends fo saturation.
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V. CoNCLUSION

Under the assumptions of mode coupling occurring
between nearest neighbors and a differential attenuation
being zero from 0 to ,, and infinite beyond 8,,, we have
developed a numerical method of solution of the power-
flow equation in optical fibers.

Although we were obliged to take the high magnitude of
the derivatives into account, the method is simple and easy
to program. Moreover, its small memory requirements
allow the use of small digital computers.

Solutions for the basic parameters (power distribution,
attenuation, and far-field radiation pattern) are sought
throughout the whole length of the fiber under arbifrary
coupling coefficients and launching conditions. By intro-
ducing a correction factor on the power distribution, the
method could be fruitfully applied to find the quantitative
influence of a fiber joint or a local defect. '

However, the presented results dealt mainly with buff-
ered Corning fibers. It has been shown that with a constant
coupling coefficient the numerical and analytical solutions
are in complete agreement and that the distortions in fiber
axis with correlation lengths less than 3 mm cause significant
excess losses. We feel that these results are very important
in the design of the buffering of Corning fibers,

Two further extensions of this work seem desirable: the
determination of the optimal coupling coefficient shape and
the solution of the time-dependent equation.

APPENDIX

By applying the Crank-Nicholson scheme described in
(20) and (21), (27) can be written

A—G—Z [(I — H(P?HT + 1) — PXT + 1)
+ 10(I — 1)(P***4(I) — PX(I))
+ (I =PI = 1) — PAI - )]
_ 2 = 5 ~ 1) zia z
= o [PZ+A4(T + 1) 4+ P%(I + 1)]
L =Dna2d - Ha —3) - 1)
d-Hd -3
_[PZ+AZ(I) + PZ(I)]
120 — 3* — 1 rp74az z
+ S [P - 1)+ P - D).
(AD
Let
AQ?
A=2 NE (A2)

Equation (A1) can be rewritten in a standard form as
AP — 1) + B(HP*HA4() + C(HP ™ %(I + 1)

= DU)P¥I — 1) + E(DPX(I) + F(DPXI + 1)
(A3)
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with
2 = D12 = PA -3 — 1]
—-HT -3

B(I) = 100 — 1) +

(A4)

and

AD=CI -1

F(I) = —C) + A2 — 1)

E(I) = —B(I) + 204 - 1)

D)y = F(I - 1).
The first boundary condition (10) is satisfied with

CM -1 =FM~—-1) =0. (A5)

This set of equations is valid for I = 2,---M — 1. For
I = 1, in order to include the second boundary condition,
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we use expansions. We get

A =D1) =0

BlHy=41+4

c() = -4

E(1) =21-4

F(1) = 4. (A6)
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Modes and Cutoff Frequencies of Crossed
Rectangular Waveguides

QUANG C. THAM, MEMBER, IEEE

Abstract—One complete solution is presented for determining the
electromagnetic field of a generalized crossed rectangular waveguide.
The method adopted is that of partial regions. Cutoff frequencies of
symmetrical crossed waveguides are presented as an example. The results,
even for low-order approximations, correspond well with the only
experimental results available in the literature.

I. INTRODUCTION

RACTICAL waveguides usually have rectangular or
P circular cross sections whose cutoff frequencies and
field equations have been known for years through the
method of separation of variables. Other cross-sectional
shapes are possible, but in general few of these have been
investigated. Recently, crossed rectangular waveguide
shapes have been of interest due to the fact that they may
offer some advantages in terms of circular polarization and
wider bandwidth or both [1]. Moreover, it has been shown
experimentally that a dichroic panel of symmetrical crossed
rectangular slots offers some favorable results as far as
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bandwidth and transmission at oblique angles of incidence
are concerned [2].

The knowledge of crossed rectangular waveguides is, to
the best knowledge of the author, limited to the paper by
Stalzer er al. [1] who use a computer program developed
by Konrad and Silvester [3] to calculate cutoff frequencies
and field patterns. They also performed experimental work
on the measurement of individual modes. Mathematical
expressions for fields inside a crossed rectangular wave-
guide have not been reported.

Mathematical expressions for the fields within the guide
are important. For example, if one is interested in modal
matching techniques [4], [5] to give predictions for trans-
mission of electromagnetic waves through a thin conducting
screen periodically perforated with crossed rectangular

" slots, one has to know these relations.

The intent of this report is to find cutoff frequencies and
expressions for the fields within the waveguide. Cutoff fre-
quencies of symmetrical crossed waveguide shapes are pre-
sented in the form of graphs. The results, even for a 3 x 3
approximation, correspond well with the experimental
results reported [1].

The generalized crossed rectangular waveguide studied in



